Statistical Methods used for Higgs Boson Searches

Roger Wolf
03. June 2014
Recap from Last Time (Simulation of Processes)

- From “paper & pen” statements to high precision predictions on observable quantities (at the LHC):

\[\sigma_{QCD} = \sum_{jk} \int dx_j dx_k f_j(x_j, \mu_F^2) f_k(x_k, \mu_F^2) \hat{\sigma}(x_j x_k s, \mu_F^2, \mu_R^2) \]

- Discussed in lectures 1-3.
Recap from Last Time (Data Analysis)

- Observable → real measurement:
Recap from Last Time (Data Analysis)

- Observable → real measurement:

Data preparation techniques:

- Reconstruction of traces in the detector units.
- Alignment of track detectors.
- Calibration of energy response.
- Reconstruction & selection efficiency ("Tag & probe", "MC Embedding")
- How well are background processes understood?
Institute of Experimental Particle Physics (IEKP)

of Today

- Observable → real measurement:

Data preparation techniques:
- Reconstruction & selection efficiency ("Tag & probe", "MC Embedding")
- How well are background processes understood?

How to establish a new (small) signal on top of a "reasonably" well known background?

Transverse slice through CMS

Electromagnetic Calorimeter

Hadron Calorimeter

Superconducting Solenoid
Quiz of the Day

- What is the relation between the Binomial, Gaussian & Poisson distribution?
- What is the relation between a minimal χ^2 fit and a Maximum Likelihood fit?
- How exactly do I calculate a 95% CL limit and how does it relate to classical hypothesis tests?
Quiz of the Day

• What is the relation between the Binomial, Gaussian & Poisson distribution?

• What is the relation between a minimal χ^2 fit and a Maximum Likelihood fit?

• How exactly do I calculate a 95% CL limit and how does it relate to classical hypothesis tests? Can you interpret this plot?
Quiz of the Day

- What is the relation between the Binomial, Gaussian & Poisson distribution?

- What is the relation between a minimal χ^2 fit and a Maximum Likelihood fit?

- How exactly do I calculate a 95% CL limit and how does it relate to classical hypothesis tests? Can you interpret this plot?

- What does a “3σ evidence” or a “5σ discovery” mean?
Schedule for Today

1. Probability distributions & Likelihood functions.

2. Parameter estimates (=fits).

3. Limits, p-values, significances.
Schedule for Today

1. Probability distributions & Likelihood functions.
2. Parameter estimates (=fits).
3. Limits, p-values, significances.

Walk through statistical methods that will appear in the next lectures:

- You will see all these methods acting in real life during the next lectures.
- To learn about the interiors of these methods check KIT lectures of Modern Data Analysis Techniques.
Theory:

- QM wave functions are interpreted as probability density functions.

- The Matrix Element, S_{fi}, gives the probability to find final state f for given initial state i.

- Each of the statistical processes
 $pdf \rightarrow ME \rightarrow hadronization \rightarrow energy \ loss \ in \ material \rightarrow digitization$

 are statistically independent.

- Event by event simulation using Monte Carlo integration methods.
Statistics ↔ Particle Physics

Theory:

• QM wave functions are interpreted as probability density functions.

• The Matrix Element, \(S_{fi} \), gives the probability to find final state \(f \) for given initial state \(i \).

• Each of the statistical processes
 \(pdf \rightarrow ME \rightarrow hadronization \rightarrow energy \ loss \ in \ material \rightarrow digitization \)
 are statistically independent.

• Event by event simulation using Monte Carlo integration methods.

Experiment:

• All measurements we do are derived from rate measurements.

• We record millions of trillions of particle collisions.

• Each of these collisions is independent from all the others.
Statistics ↔ Particle Physics

Theory:
• QM wave functions are interpreted as probability density functions.
• The Matrix Element, S_{fi}, gives the probability to find final state f for given initial state i.
• Each of the statistical processes $pdf \rightarrow ME \rightarrow$ hadronization \rightarrow energy loss in material \rightarrow digitization are statistically independent.
• Event by event simulation using Monte Carlo integration methods.

Experiment:
• All measurements we do are derived from rate measurements.
• We record millions of trillions of particle collisions.
• Each of these collisions is independent from all the others.

• Particle physics experiments are a perfect application for statistical methods.
Characterization of Probability Distributions

- Expectation Value:

\[E[x] = \int_{-\infty}^{\infty} x \cdot pdf(x) dx = \mu \]

- Variance:

\[V[x] = \int_{-\infty}^{\infty} (x - \mu) \cdot pdf(x) dx = \sigma^2 \]

\[= E[(x - E[x])^2] = E[x^2 - 2xE[x] + E^2[x]] = E[x^2] - E^2[x] \]

- Covariance:

\[cov[x, y] = E[(x - \mu(x))(y - \mu(y))] = \int_{-\infty}^{\infty} x \cdot y \cdot pdf(x, y) dx = E[xy] - \mu(x)\mu(y) \]

- Correlation coefficient:

\[\rho(x, y) = \frac{cov[x, y]}{\mu(x)\mu(y)} \]
Probability Distributions

Expectation: $\mu = np$

Variance: $\sigma^2 = np(1 - p)$

$$P(k, n, p) = \binom{n}{k} p^k \cdot (1 - p)^{n-k}$$
(Binomial distribution)
Probability Distributions

<table>
<thead>
<tr>
<th>Probability Distribution</th>
<th>Expectation</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Gaussian distribution)</td>
<td>$\mu = np$</td>
<td>$\sigma^2 = np(1 - p)$</td>
</tr>
<tr>
<td>(Binomial distribution)</td>
<td>$\mu = np$</td>
<td>$\sigma^2 = np(1 - p)$</td>
</tr>
</tbody>
</table>

$P(k, n, p) = \frac{1}{\sqrt{2\pi np(1-p)}} e^{-\frac{1}{2}(\frac{k-np}{np(1-p)})^2}$

$n \to \infty$, p fixed

Central limit theorem of de Moivre & Laplace.
Probability Distributions

\[\mathcal{P}(k, n, p) = \frac{1}{\sqrt{2\pi np(1-p)}} e^{-\frac{1}{2} \left(\frac{k-np}{np(1-p)} \right)^2} \]

(Gaussian distribution)

\[n \to \infty \text{, } p \text{ fixed} \]

Central limit theorem of de Moivre & Laplace.

\[\mathcal{P}(k, n, p) = \binom{n}{k} p^k \cdot (1-p)^{n-k} \]

(Binomial distribution)

\[n \to \infty \text{, } np \text{ fixed} \]

Will be shown on next slide.

\[\mathcal{P}(k, n, p) = \frac{(np)^k}{k!} e^{-np} \]

(Poisson distribution)

<table>
<thead>
<tr>
<th>Expectation:</th>
<th>Variance:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu = np)</td>
<td>(\sigma^2 = np(1 - p))</td>
</tr>
<tr>
<td>(\mu = np)</td>
<td>(\sigma^2 = np(1 - p))</td>
</tr>
<tr>
<td>(\mu = np)</td>
<td>(\sigma^2 = \mu = np)</td>
</tr>
</tbody>
</table>
Probability Distributions

\[\mathcal{P}(k, n, p) = \frac{1}{\sqrt{2\pi np(1-p)}} e^{-\frac{1}{2} \left(\frac{k-np}{np(1-p)} \right)^2} \]

(Gaussian distribution)

\[n \to \infty, \ p \ \text{fixed} \]

Central limit theorem of de Moivre & Laplace.

\[\mathcal{P}(k, n, p) = \binom{n}{k} p^k \cdot (1-p)^{n-k} \]

(Binomial distribution)

\[n \to \infty, \ np \ \text{fixed} \]

Will be shown on next slide.

\[\mathcal{P}(k, n, p) = \frac{(np)^k}{k!} e^{-np} \]

(Poisson distribution)

<table>
<thead>
<tr>
<th>Expectation:</th>
<th>Variance:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu = np)</td>
<td>(\sigma^2 = np(1 - p))</td>
</tr>
</tbody>
</table>

motivation for uncertainty.
Binomial ↔ Poisson Distribution

\[P(k, n, p) = \binom{n}{k} p^k \cdot (1 - p)^{n-k} \]

\[= \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} \cdot \frac{\mu^k}{n^k} \cdot \left(1 - \frac{\mu}{n}\right)^n \]

\[= \frac{1 \cdot (1 - \frac{1}{n}) (1 - \frac{2}{n}) \cdots (1 - \frac{k-1}{n})}{(1 - \frac{\mu}{n})^k} \cdot \frac{\mu^k}{k!} \cdot \left(1 - \frac{\mu}{n}\right)^n \]

\[= \frac{1}{(1 - \frac{\mu}{n})} \cdot \frac{(1 - \frac{2}{n})}{(1 - \frac{\mu}{n})} \cdot \frac{(1 - \frac{2}{n})}{(1 - \frac{\mu}{n})} \cdots \cdot \frac{(1 - \frac{k-1}{n})}{(1 - \frac{\mu}{n})} \cdot \frac{\mu^k}{k!} \cdot \left(1 - \frac{\mu}{n}\right)^n \]

\[= \frac{\mu^k}{k!} e^{-\mu} \]

\[\mu = \text{const}, \ n \to \infty \]
Uncertainties on Counting Experiments

\[P(k, \mu_i) = \frac{\mu_i^k}{k!} e^{-\mu_i} \]

\[\sqrt{k} \text{ uncertainty} \]

\[k \]

counting experiment
Uncertainties on Counting Experiments

\[\mathcal{P}(k, \mu_i) = \frac{\mu_i^k}{k!} e^{-\mu_i} \]

Number of events in \(bin_i \) depends on \(n \) and on probability \(p_i = \int_{i}^{i+\delta} pdf \).

Binned Histogram

\(\sqrt{k} \) uncertainty

Counting experiment

Underlying pdf
Relations between Probability Distributions

Central Limit Theorem:
Random variable variable made up of a sum of many single measurements.

\[n \to \infty, p = \text{cont} \]

\[n \to \infty, np = \text{cont} \]

Gaussian

Binomial

Poisson

Look for something that is very rare very often.
Relations between Probability Distributions

Log-normal

Random variable variable made up of a sum of many single measurements.

Central Limit Theorem:
Random variable variable made up of a product of many single measurements.

Gaussian

$n \to \infty, p = \text{cont}$

Binomial

$n \to \infty, np = \text{cont}$

Poisson

Look for something that is very rare very often.

Lognormal Density

$\mu = 0$

$\sigma^2 = 0.1$

$\sigma^2 = 0.5$

$\sigma^2 = 1.0$
Relations between Probability Distributions

Log-normal

Central Limit Theorem:
Random variable variable made up of a sum of many single measurements.

Gaussian

χ^2 Distribution

Random variable variable made up of a product of many single measurements.

Binomial

$n \to \infty, p = \text{cont}$

Poisson

$n \to \infty, np = \text{cont}$

What does the parameter k correspond to in the χ^2 distributions?

Look for something that is very rare very often.
Relations between Probability Distributions

Log-normal

Central Limit Theorem:
Random variable variable made up of a sum of many single measurements.

Random variable variable made up of a product of many single measurements.

\[\exp \]

Gaussian

\[n \to \infty, p = \text{cont} \]

\[\chi^2 \text{ Distribution} \]

Binomial

\[n \to \infty, np = \text{cont} \]

Poisson

What does the parameter \(k \) correspond to in the \(\chi^2 \) distributions?

Look for something that is very rare very often.
Likelihood Functions

- **Problem**: truth is not known!
- Deduce “truth” from measurements (usually in terms of models).
- **Likeliness of a model to be true** quantified by *likelihood function*
 \[\mathcal{L}(\{k_i\}, \{\kappa_j\}) \].

model parameters.

measured number of events (e.g. in bins \(i\)).
Likelihood Functions

- **Problem**: truth is not known!
- Deduce “truth” from measurements (usually in terms of models).
- **Likelihood of a model** to be true quantified by *likelihood function* $\mathcal{L}(\{k_i\}, \{\kappa_j\})$.
- Example: signal on top of known background in a binned histogram:

\[
\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))
\]

Product of *pdfs* for each bin (Poisson).

- Model parameters:
- Measured number of events (e.g. in bins i).

\[
\mu_i(\kappa_j) = k_0 \cdot e^{-k_1 x_i} + k_2 \cdot e^{-\left(\kappa_3 - x_i\right)^2}
\]

- Background
- Signal
Parameter Estimates
Parameter Estimates

- **Problem**: find most probable parameter(s) \(\kappa_j \) of a given model.
- Usually minimization of negative \(\ln \) likelihood function (\(NLL \)):
 - \(\ln \) is a monotonic function and very often numerically easier to handle.
 - e.g. products of probability distributions turn into sums.
 - e.g. if probability distributions are Gaussians \(NLL \) turns into \(\chi^2 \) minimization:
Parameter Estimates

- **Problem**: find most probable parameter(s) κ_j of a given model.

- Usually minimization of negative \ln likelihood function (NLL):
 - \ln is a monotonic function and very often numerically easier to handle.
 - e.g. products of probability distributions turn into sums.
 - e.g. if probability distributions are Gaussians NLL turns into χ^2 minimization:

 Clear to everybody?
Parameter Estimates

- **Problem**: find most probable parameter(s) κ_j of a given model.
- Usually minimization of negative \ln likelihood function (NLL):
 - \ln is a monotonic function and very often numerically easier to handle.
 - e.g. products of probability distributions turn into sums.
 - e.g. if probability distributions are Gaussians NLL turns into χ^2 minimization:

\[
NLL = -\ln \left(\prod_i \frac{1}{\sigma_i} \left(\frac{x_i - \mu_i}{\sigma_i} \right)^2 \right) \propto \sum_i \left(\frac{x_i - \mu_i}{\sigma_i} \right)^2
\]

Clear to everybody?

Number of μ_i determines dimension of the Gaussian distribution.
Parameter Estimates

- **Problem**: find most probable parameter(s) \(\kappa_j \) of a given model.
- Usually minimization of **negative** \(\ln \) likelihood function (**NLL**):
 - \(\ln \) is a monotonic function and very often numerically easier to handle.
 - e.g. products of probability distributions turn into sums.
 - e.g. if probability distributions are Gaussians **NLL turns into** \(\chi^2 \) minimization:

\[
NLL = -\ln \left(\prod_i e^{-\frac{1}{2} \left(\frac{x_i - \mu_i}{\sigma_i} \right)^2} \right) \propto \sum_i \left(\frac{x_i - \mu_i}{\sigma_i} \right)^2
\]

- The minimization usually performed:
 - **analytically** (like in an optimization exercise in school).
 - **numerically** (usually the more general solution).
 - by **scan of the NLL** (for sure the most robust method).
Parameter(s) of Interest (POI)

- Each case/problem defines its own parameter(s) of interest (POI's):
 - POI could be the mass κ_3.

- Example:
 signal on top of known background in a binned histogram:

\[
\mathcal{L}(\{\kappa_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(\kappa_i, \mu_i(\kappa_j))
\]

Product of pdfs for each bin (Poisson).

\[
\mu_i(\kappa_j) = \kappa_0 \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}
\]

- background
- signal
Parameter(s) of Interest (POI)

- Each case/problem defines its own *parameter(s) of interest (POI's)*:
 - POI could be the mass κ_3.
 - In our case POI usually is the signal strength κ_2 for a fixed value for κ_3.

- Example:
 signal on top of known background in a binned histogram:

\[
\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))
\]

Product of pdfs for each bin (Poisson).

\[
\mu_i(\kappa_j) = \kappa_0 \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}
\]

background signal
Systematic Uncertainties

- Systematic uncertainties are usually incorporated as *nuisance parameters*:

- Example: assume background normalization κ_0 is not absolutely known, but with an uncertainty $\sigma(\kappa_0)$:

$$
\mu_i(\kappa_j) = \mathcal{P}'(\tilde{\kappa}_0, \kappa_0, \sigma(\kappa_0)) \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}
$$

- Example: signal on top of known background in a binned histogram:

$$
\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))
$$

Product of pdfs for each bin (Poisson).

$$
\mu_i(\kappa_j) = \kappa_0 \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}
$$

<table>
<thead>
<tr>
<th>mass [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>150</td>
</tr>
</tbody>
</table>

uncertainty

expected value

possible values in single measurements
Hypothesis Tests
Hypothesis Separation

- Start with two alternative hypotheses H_0 & H_1.
- Define a test statistic $q : \mathbb{R}^n \rightarrow \mathbb{R}$ that can distinguish these two hypotheses.
- The test statistic with the best separation power is the likelihood ratio (LR):

$$q = -2 \ln \left(\frac{L(\text{obs}|H_1)}{L(\text{obs}|H_0)} \right)$$

- q can be calculated for the observation (obs), for the expectation for H_0 and for the expectation for H_1:
 - Observed is a single value (outcome of measurement).
 - Expectation is a mean value with uncertainties based on toy measurements.
Hypothesis Separation

- Start with two alternative hypotheses H_0 & H_1.
- Define a test statistic $q : \mathbb{R}^n \rightarrow \mathbb{R}$ that can distinguish these two hypotheses.
- The test statistic with the best separation power is the likelihood ratio (LR).

$$q = -2 \ln \left(\frac{\mathcal{L}(\text{obs})|H_1}{\mathcal{L}(\text{obs})|H_0} \right)$$

- q can be calculated for the observation (obs), for the expectation for H_0 and for the expectation for H_1:
 - Observed is a single value (outcome of measurement).
 - Expectation is a mean value with uncertainties based on toy measurements.
Test Statistics (LEP)

- Start with two alternative hypotheses H_0 & H_1.
- Define a test statistic $q : \mathbb{R}^n \rightarrow \mathbb{R}$ that can distinguish these two hypotheses.
- The test statistic with the best separation power is the likelihood ratio (LR):

$$q = -2 \ln \left(\frac{\mathcal{L}(\text{obs})|H_1}{\mathcal{L}(\text{obs})|H_0} \right)$$

\[
\mathcal{L}(n| b(\kappa_j)) = \prod_i \mathcal{P}(n_i|b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\tilde{\kappa}_j)
\]

\[
\mathcal{L}(n| \mu s(\kappa_j) + b(\kappa_j)) = \prod_i \mathcal{P}(n_i|\mu s_i(\kappa_j) + b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\tilde{\kappa}_j)
\]

$$q_\mu = -2 \ln \left(\frac{\mathcal{L}(n|\mu s + b)}{\mathcal{L}(n|b)} \right), \quad 0 \leq \mu$$

nuisance parameters $\tilde{\kappa}_j$ integrated out (by throwing toys → MC method) before evaluation of q_μ (→marginalization).
Test Statistics (Tevatron)

- Start with two alternative hypotheses H_0 & H_1.
- Define a test statistic $q : \mathbb{R}^n \rightarrow \mathbb{R}$ that can distinguish these two hypotheses.
- The test statistic with the best separation power is the likelihood ratio (LR):

$$q = -2 \ln \left(\frac{\mathcal{L}(\text{obs})|H_1}{\mathcal{L}(\text{obs})|H_0} \right)$$

\[\mathcal{L}(n|b(\kappa_j)) = \prod_i \mathcal{P}(n_i|b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\tilde{\kappa}_j) \]

\[\mathcal{L}(n|\mu s(\kappa_j) + b(\kappa_j)) = \prod_i \mathcal{P}(n_i|\mu s_i(\kappa_j) + b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\tilde{\kappa}_j) \]

$$q_\mu = -2 \ln \left(\frac{\mathcal{L}(n|\mu s(\kappa_\mu) + b(\kappa_\mu))}{\mathcal{L}(n|b(\kappa_\mu=0))} \right), \quad 0 \leq \mu$$

nominator maximized for given μ before marginalization. Denominator for $\mu = 0$. Better estimates on nuisance parameters. Reduces uncertainties on nuisance parameters.
Test Statistics (LHC)

- Start with two alternative hypotheses H_0 & H_1.
- Define a test statistic $q : \mathbb{R}^n \rightarrow \mathbb{R}$ that can distinguish these two hypotheses.
- The test statistic with the best separation power is the likelihood ratio (LR):

$$q = -2 \ln \left(\frac{\mathcal{L}(\text{obs})|H_1}{\mathcal{L}(\text{obs})|H_0} \right)$$

\[
\mathcal{L}(n|b(\kappa_j)) = \prod_i \mathcal{P}(n_i|b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\bar{\kappa}_j) \\
\mathcal{L}(n|\mu s(\kappa_j) + b(\kappa_j)) = \prod_i \mathcal{P}(n_i|\mu s_i(\kappa_j) + b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\bar{\kappa}_j) \\
q_\mu = -2 \ln \left(\frac{\mathcal{L}(n|\mu s(\bar{\kappa}_\mu) + b(\bar{\kappa}_\mu))}{\mathcal{L}(n|\bar{\mu} s(\bar{\kappa}_\bar{\mu}) + b(\bar{\kappa}_\bar{\mu}))} \right), \quad 0 \leq \hat{\mu} \leq \mu
\]

nominator maximized for given μ before marginalization. For the denominator a global maximum is searched for at $\hat{\mu}$. In addition allows use of asymptotic formulas (\rightarrow no need for toys).
Classical Hypothesis Testing

- Classical hypothesis test interested in probability to observe q_{obs} given that H_0 or H_1 is true:

$$
\begin{array}{c|c}
q \leq q_{\text{obs}}|_{H_1} & q \geq q_{\text{obs}}|_{H_1} \\
q \leq q_{\text{obs}}|_{H_0} & q \geq q_{\text{obs}}|_{H_0}
\end{array}
$$

q_{obs} defines upper bound
q_{obs} defines lower bound

- We are usually interested in “upper limits”, which correspond to “lower bounds” (\rightarrow how often signal \leq observed deviation?).
95% CL Upper Limits

- Our pdf's usually depend on another parameter, which is the actual POI (μ in SM, tan β in MSSM case).
- Traditionally we set 95% CL upper limits on this POI.

- pdf's move apart from each other.
- The more separate the pdf's are the more H_0 & H_1 are distinguishable.
- Find POI$_i$ for which:

$$\mathcal{I}_{\text{POI}} = \int_{-\infty}^{q_{\text{obs}}} \text{pdf} = 0.05$$

for this POI$_i$ in 95% of all toys $q \geq q_{\text{obs}}$.
95% CL Upper Limits

- Our pdf's usually depend on another parameter, which is the actual POI (μ in SM, \(\tan \beta \) in MSSM case).

- Traditionally we set 95% CL upper limits on this POI.

95% CL Upper Limit:

- \(POI_i \) is the value at which in case that \(H_1 \) is the true hypothesis, the chance that \(q \geq q_{\text{obs}} \) is 95%.

- Still there is a chance of 5% that \(q < q_{\text{obs}} \).

For this \(POI_i \), in 95% of all toys \(q \geq q_{\text{obs}} \).
95% CL Upper Limits

- Our pdf's usually depend on another parameter, which is the actual POI (μ in SM, \(\tan \beta\) in MSSM case).
- Traditionally we set 95% CL upper limits on this POI.

95% CL Upper Limit:

- POI\(_i\) is the value at which in case that \(H_1\) is the true hypothesis the chance that \(q \geq q_{\text{obs}}\) is 95%.
- Still there is a chance of 5% that \(q < q_{\text{obs}}\).
- Assume our POI is \(\mu\): does the 90% CL upper limit on \(\mu\) correspond to a higher or a lower value \(\mu_{90\%}\)?
95% CL Upper Limits

- Our pdf's usually depend on another parameter, which is the actual POI (μ in SM, tan β in MSSM case).

- Traditionally we set 95% CL upper limits on this POI.

95% CL Upper Limit:

- **POI** is the value at which in case that H_1 is the true hypothesis the chance that $q \geq q_{obs}$ is 95%.

- Still there is a chance of 5% that $q < q_{obs}$.

- Assume our POI is μ: does the 90% CL upper limit on μ correspond to a higher or a lower value μ$_{90\%}$? → It's lower!

\[\int_{-\infty}^{q_{obs}} \text{pdf} = 0.05 \]

1% probability of q to be “more background like” than q_{obs}.
• In particle physics we set more conservative limits than this, following the CLs method:

• Assume H_1 to be signal+background and H_0 to be background only hypothesis.

\[
\text{CL}(S + B) = \int_{-\infty}^{q_{\text{obs}}} p df_{H_1}
\]

\[
\text{CL}(B) = \int_{-\infty}^{q_{\text{obs}}} p df_{H_0}
\]

• Find POI_i for which:

\[
\text{CL}_S = \frac{\text{CL}(S+B)}{\text{CL}(B)} = 0.05
\]
CLs Limits

- In particle physics we set more conservative limits than this, following the CLs method:
- Assume H_1 to be signal+background and H_0 to be background only hypothesis.

\[
\text{CL}(S + B) = \int_{-\infty}^{q_{\text{obs}}} p df_{H_1} \\
\text{CL}(B) = \int_{-\infty}^{q_{\text{obs}}} p df_{H_0}
\]

- Find POI$_i$ for which:
 \[
 \text{CLS} = \frac{\text{CL}(S+B)}{\text{CL}(B)} = 0.05
 \]
- If $H_0 \& H_1$ are clearly distinguishable $\text{CLS} \rightarrow \text{CL}(S + B)$.
In particle physics we set more conservative limits than this, following the CLs method:

- Assume H_1 to be signal+background and H_0 to be background only hypothesis.

POI$_i$, POI$_{i+1}$, POI$_{i+2}$

\[
CL(S + B) = \int_{-\infty}^{q_{\text{obs}}} pdf_{H_1}
\]

\[
CL(B) = \int_{-\infty}^{q_{\text{obs}}} pdf_{H_0}
\]

- Find POI$_i$ for which:

\[
CL_S = \frac{CL(S+B)}{CL(B)} = 0.05
\]

- If H_0 & H_1 are clearly distinguishable $CL_S \rightarrow CL(S + B)$.

- If they cannot be distinguished $CL_S > CL(S + B)$.

interested in integration of magenta pdf & blue pdf from below.
In particle physics we set more conservative limits than this, following the CLs method:

- Assume H_1 to be signal+background and H_0 to be background only hypothesis.
Expected Limit (canonical approach)

- To obtain the expected limit *mimic calculation of observed*, but base it on toy experiments.

- Make use of the fact that the *pdf*’s do not depend on toys (i.e. schematic plot on the left does not change).

- Throw number of toys under the BG only hypothesis (H_0) determine distribution of 95% CL limits on POI.

- Obtain quantiles for expected limit from this distribution.
And if the signal shows up...
p-Value

• How do we know whether what we see is not just a background fluctuation?

• The p-value is the probability \(P(q \geq q_{\text{obs}} | H_0) \) to observe values of \(q \) larger than \(q_{\text{obs}} \) under the assumption that the background only hypothesis \(H_0 \) is the true hypothesis.

• Think of…
 … the limit as a way to falsify the signal plus background hypothesis \((H_1) \).
 … the p-value as a way to falsify the background only hypothesis \((H_0) \).
Significance

• If the measurement is normal distributed q is distributed according to a χ^2 distribution.

• The χ^2 probability can then be interpreted as a Gaussian confidence interval.

p-values:
\[P(q \geq 3\sigma|H_0) = 1 \cdot 10^{-3} \]
\[P(q \geq 5\sigma|H_0) = 2 \cdot 10^{-5} \]
Significance (in practice)

- If the measurement is normal distributed q is distributed according to a χ^2 distribution.
- The χ^2 probability can then be interpreted as a Gaussian confidence interval.
- Usual approximation in practice is to estimate significances by:

$$S = \frac{n_{\text{obs}} - n_b}{\sqrt{n_b}}$$
Significance (in practice)

- If the measurement is normal distributed, \(q \) is distributed according to a \(\chi^2 \) distribution.

- The \(\chi^2 \) probability can then be interpreted as a Gaussian confidence interval.

- Usual approximation in practice is to estimate significances by:

\[
S = \frac{n_{\text{obs}} - n_b}{\sqrt{n_b}}
\]

![Graph showing expected signal events vs. mass]
Significance (in practice)

- If the measurement is normal distributed, \(q \) is distributed according to a \(\chi^2 \) distribution.
- The \(\chi^2 \) probability can then be interpreted as a Gaussian confidence interval.
- Usual approximation in practice is to estimate significances by:

\[
S = \frac{n_{\text{obs}} - n_b}{\sqrt{n_b}}
\]

expected signal events

Poisson uncertainty on expected background events.
Significance (in practice)

- If the measurement is normal distributed, q is distributed according to a χ^2 distribution.
- The χ^2 probability can then be interpreted as a Gaussian confidence interval.
- Usual approximation in practice is to estimate significances by:

$$S = \frac{n_{\text{obs}} - n_b}{\sqrt{n_b}}$$

expected signal events

Poisson uncertainty on expected background events.
Concluding Remarks

- Reviewed all **statistical tools necessary to search for the Higgs signal** (\rightarrow as a small signal above a known background):
 - Probability distributions, likelihood functions, limits, p-values, ...

- Limits are a usual way to 'exclude' the signal hypothesis (H_1).

- p-values are a usual way to 'exclude' the background hypothesis (H_0).

- Under the assumption that the test statistic q is χ^2 distributed p-values can be translated into **Gaussian confidence intervals** σ.

- In particle physics we call an observation with $\geq 3\sigma$ an **evidence**.

- We call an observation with $\geq 5\sigma$ a **discovery**.
Concluding Remarks

- Reviewed all statistical tools necessary to search for the Higgs signal (→ as a small signal above a known background):
 - Probability distributions, likelihood functions, limits, p-values, ...
 - Limits are a usual way to 'exclude' the signal hypothesis \((H_1) \).
 - p-values are a usual way to 'exclude' the background hypothesis \((H_0) \).
 - Under the assumption that the test statistic \(q \) is \(\chi^2 \) distributed p-values can be translated into Gaussian confidence intervals \(\sigma \).
 - In particle physics we call an observation with \(\geq 3\sigma \) an evidence.
 - We call an observation with \(\geq 5\sigma \) a discovery.
 - Once a measurement is established the search is over! Measurements of properties are new and different world!
Sneak Preview for Next Week

- Review indirect estimates of the Higgs mass and searches for the Higgs boson that have been made before 2012:
 - Estimates of m_t and m_H from high precision measurements at the Z-pole mass at LEP.
 - Direct searches for the Higgs boson at LEP.
 - Direct searches for the Higgs boson at the Tevatron.

- For the remaining lectures we then will turn towards the discovery of the Higgs boson at the LHC.

During the next lectures we will see 1:1 life examples of all methods that have been presented here.
Backup & Homework Solutions