Electroweak Sector of the SM

Roger Wolf
23. April 2015
Schedule for Today

1. Review of Lie-Groups:
 - $U(1) \ & \ SU(2)$
 - (Non-) Abelian Gauge theories

2. Phenomenology of Weak Interaction

3. Sketch of the Electroweak Sector of the SM:
 - Left (Right)-handed States
 - Local $SU(2) \times U(1)$ Symmetry
 - Weinberg Rotation
Quiz of the Day

• Are normal normal rotation in \mathbb{R}^3 Abelian or non-Abelian?

• The W boson only couples to left-handed particles! Does the Z boson also couple only to left-handed particles?

• Are the following gauge boson self-couplings allowed: zww, $wwww$?
Recap from Last Time

Gauge Field Theories:

\[\psi(\vec{x}, t) \rightarrow \psi'(\vec{x}, t) = e^{i\vartheta} \psi(\vec{x}, t) \]
\[\overline{\psi}(\vec{x}, t) \rightarrow \overline{\psi}'(\vec{x}, t) = \overline{\psi}(\vec{x}, t) e^{-i\vartheta} \]

\[\partial_\mu \rightarrow D_\mu = \partial_\mu - ieA_\mu \]
\[D_\mu \rightarrow D'_\mu = D_\mu - i\partial_\mu \vartheta \]
\[A_\mu \rightarrow A'_\mu = A_\mu + \frac{1}{e} \partial_\mu \vartheta \]

\[F_{\mu\nu} \equiv [D_\mu, D_\nu] = \partial_\mu A_\nu - \partial_\nu A_\mu \]
\[F_{\mu\nu} \rightarrow F'_{\mu\nu} = F_{\mu\nu} \]

\[\mathcal{L} = \overline{\psi} (i \gamma^\mu D_\mu - m) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \]
Review of Lie-Groups

Marius Sophus Lie

(*17. December 1842, † 18. February 1899)
Unitary Transformations

\[\psi(\vec{x}, t) \rightarrow \psi'(\vec{x}, t) = e^{i\vartheta} \psi(\vec{x}, t) \]

- \(U(1) \) is a group of unitary transformations in \(\mathbb{R}^n \) with the following properties:
 \[\mathbf{G} \in U(n), \quad \mathbf{G}^\dagger \mathbf{G} = \mathbb{I}_n, \quad \text{det} \mathbf{G} = \pm 1 \]

- Splitting an additional phase from \(\mathbf{G} \) one can reach that \(\text{det} \mathbf{G} = 1 \):
 \[U(n) = U(1) \times SU(n) \]

\[\text{det} \mathbf{G} = \pm 1 \quad \text{(Unitary Transformations)} \]
\[\text{det} \mathbf{G} = +1 \quad \text{(Special Unitary Transformations)} \]
Infinitesimal → Finite Transformations

- The $SU(n)$ can be composed from infinitesimal transformations with a continuous parameter $\vartheta \in \mathbb{R}$:

$$G_{\text{finite}} = \mathbb{I}_n + iv_{\text{finite}} t \ (v_{\text{finite}} \in \mathbb{R}, \ t \in \mathcal{M}(n \times n))$$

$$G_{\text{finite}} = \left(\mathbb{I}_n + i\frac{v_{\text{finite}}}{m} t\right)^m \xrightarrow{m \to \infty} e^{iv_{\text{finite}} \cdot t} \quad t \text{ generators of } G.$$

- The set of G forms a Lie-Group.

- The set of t forms the tangential-space or Lie-Algebra.
Properties of t

- **Hermitian:**
 \[G^\dagger G = I_n \]
 \[= (I_n - i\vartheta t^\dagger) (I_n + i\vartheta t) = I_n + i\vartheta (t - t^\dagger) + O(\vartheta^2) \]
 \[t = t^\dagger \]

- **Traceless** (example $SU(n)$):
 \[\det G = \det (I_n + i\vartheta t) \]
 \[= 1 + i\vartheta \text{Tr}(t) + O(\vartheta^2) \]
 \[\Rightarrow \text{Tr}(t) = 0 \]

- **Dimension of tangential space:**
 \[
 \begin{pmatrix}
 * & * & * & * & * & * \\
 * & * & * & * & * & * \\
 * & * & * & * & * & * \\
 * & * & * & * & * & * \\
 * & * & * & * & * & * \\
 * & * & * & * & * & *
 \end{pmatrix}
 \]
 - n real entries in diagonal.
 - $\frac{1}{2} \cdot n(n - 1)$ complex entries in off-diagonal.
 - -1 for $SU(n)$ for det req.

- **$U(n)$ has n^2 generators.**
- **$SU(n)$ has $(n^2 - 1)$ generators.**
Examples that appear in the SM ($U(1)$)

- $U(1)$ Transformations (equivalent to $O(2)$):
 - Number of generators: $1^2 = 1$
 NB: what is the Generator?
Examples that appear in the SM ($U(1)$)

- $U(1)$ Transformations (equivalent to $O(2)$):
- Number of generators: $1^2 = 1$
 NB: what is the Generator?
 The generator is 1.
Examples that appear in the SM ($SU(2)$)

- *$SU(2)$ Transformations* (equivalent to $O(3)$):
 - Number of generators: $(2^2 - 1) = 3$ i.e. there are 3 matrices $\{t_j\}$, which form a basis of traceless hermitian matrices, for which the following relation holds:

$$G = e^{i \sum_{j=1}^{3} \vartheta_j t_j}$$

- Explicit representation:

$$t_j = \frac{1}{2} \sigma_j \quad (j = 1 \ldots 3)$$

(3 Pauli Matrices)

$$[t_i, t_j] = i \epsilon_{ijk} t_k$$
Examples that appear in the SM ($SU(2)$)

- $SU(2)$ Transformations (equivalent to $O(3)$):

 - Number of generators: $(2^2 - 1) = 3$ i.e. there are 3 matrices $\{t_j\}$, which form a basis of traceless hermitian matrices, for which the following relation holds:

 $$G = e^{i \sum_{j=1}^{3} \vartheta_j t_j}$$

 - Explicit representation:

 $$t_j = \frac{1}{2} \sigma^j \quad (j = 1 \ldots 3)$$

 (3 Pauli Matrices)

 $$[t_i, t_j] = i \epsilon_{ijk} t_k$$

 - algebra closes.
Examples that appear in the SM ($SU(2)$)

- $SU(2)$ Transformations (equivalent to $O(3)$):
 - Number of generators: $(2^2 - 1) = 3$ i.e. there are 3 matrices $\{t_j\}$, which form a basis of traceless hermitian matrices, for which the following relation holds:
 \[G = e^{i \sum_{j=1}^{3} \vartheta_j t_j} \]
 - Explicit representation:
 \[
 t_j = \frac{1}{2} \sigma_j \quad (j = 1 \ldots 3)
 \]
 \[(3 \text{ Pauli Matrices}) \]
 \[
 [t_i, t_j] = i \epsilon_{ijk} t_k
 \]
 - algebra closes.
 - structure constants of $SU(2)$.
Non-Abelian Symmetry Transformations

• Example $O(3)$ (90° rotations in \mathbb{R}^3):

 switch z and y:

 1 2
 3 4
Non-Abelian Symmetry Transformations

- Example $O(3)$ (90° rotations in \mathbb{R}^3):
Non-Abelian Symmetries Transformations

- Example $O(3)$ (90° rotations in \mathbb{R}^3):

 switch z and y:

 cyclic permutation:
Non-Abelian Symmetries Transformations

- Example $O(3)$ (90° rotations in \mathbb{R}^3):

 switch z and y:

 cyclic permutation:
Examples that appear in the SM ($SU(3)$)

- $SU(3)$ Transformations (equivalent to $O(4)$):
 - Number of generators: $(3^2 - 1) = 8$ (\rightarrow 8 Gell-Mann Matrices)
Abelian vs. Non-Abelian Gauge Theories

Abelian:

\[
\begin{align*}
\psi(\vec{x}, t) &\rightarrow \psi'(\vec{x}, t) = e^{i\vartheta} \psi(\vec{x}, t) \\
\overline{\psi}(\vec{x}, t) &\rightarrow \overline{\psi}'(\vec{x}, t) = \overline{\psi}(\vec{x}, t) e^{-i\vartheta} \\
\partial_\mu &\rightarrow D_\mu = \partial_\mu - ieA_\mu \\
D_\mu &\rightarrow D'_\mu = D_\mu - i\partial_\mu \vartheta \\
A_\mu &\rightarrow A'_\mu = A_\mu + \frac{1}{e} \partial_\mu \vartheta \\
F_{\mu\nu} &\equiv [D_\mu, D_\nu] = \partial_\mu A_\nu - \partial_\nu A_\mu \\
F_{\mu\nu} &\rightarrow F'_{\mu\nu} = F_{\mu\nu} \\
\mathcal{L} &= \overline{\psi} (i\gamma^\mu D_\mu - m) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}
\end{align*}
\]

Non-Abelian:

\[
\begin{align*}
\psi(\vec{x}, t) &\rightarrow \psi'(\vec{x}, t) = e^{i\vartheta a} t_a \psi(\vec{x}, t) \\
\overline{\psi}(\vec{x}, t) &\rightarrow \overline{\psi}'(\vec{x}, t) = \overline{\psi}(\vec{x}, t) e^{-i\vartheta a} t_a \\
\partial_\mu &\rightarrow D_\mu = \partial_\mu - igW_{\mu,a} t_a \\
D_\mu &\rightarrow D'_\mu = D_\mu - i [\vartheta a t_a, D_\mu] \\
W_\mu &\rightarrow W'_\mu = W_\mu + i [\vartheta a t_a, W_{\mu,a} t_a] + \frac{1}{g} \partial_\mu (\vartheta a t_a) \\
W_{\mu\nu} &\equiv [D_\mu, D_\nu] = \partial_\mu W_\nu - \partial_\nu W_\mu - ig [W_\mu, W_\nu] \\
W_{\mu\nu} &\rightarrow W'_{\mu\nu} = W_{\mu\nu} - i [\vartheta a t_a, W_{\mu\nu}] \\
\mathcal{L} &= \overline{\psi} (i\gamma^\mu D_\mu - m) \psi - \frac{1}{4} W_{a\mu\nu} W^{a\mu\nu}
\end{align*}
\]
The SM of Particle Physics

\[
\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\
+ i F \bar{D} D + h.c. \\
+ \mathcal{L}_\text{Y} \mathcal{L}_\text{Y} + h.c. \\
+ |\partial_\mu \phi|^2 - V(\phi)
\]
Constituents and Interactions of the SM

18 free parameters

<table>
<thead>
<tr>
<th>Quarks</th>
<th>Fermions</th>
<th>Bosons</th>
<th>Force carriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>u up</td>
<td>c charm</td>
<td>γ photon</td>
<td>$U(1)$</td>
</tr>
<tr>
<td>d down</td>
<td>s strange</td>
<td>Z Z boson</td>
<td>\times</td>
</tr>
<tr>
<td>b bottom</td>
<td></td>
<td>W W boson</td>
<td>\times</td>
</tr>
<tr>
<td>ℓ</td>
<td>Leptons</td>
<td>g gluon</td>
<td>$SU(3)$</td>
</tr>
<tr>
<td>electron</td>
<td>ν_e electron neutrino</td>
<td>8 $SU(3)$</td>
<td></td>
</tr>
<tr>
<td>μ muon</td>
<td>ν_μ muon neutrino</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ tau</td>
<td>ν_τ tau neutrino</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (left)</td>
<td>6 (right)</td>
<td>12 (Gauge fields)</td>
<td></td>
</tr>
</tbody>
</table>

45 (Fermion fields)
Constituents and Interactions of the SM

\[3 \cdot 6 (\ell. + r.)\]
\[3 \cdot 6 (\ell. + r.)\]
\[3 (\ell.)\]
\[6 (\ell. + r.)\]

45 (Fermion fields)

<table>
<thead>
<tr>
<th>Fermions</th>
<th>Bosons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarks</td>
<td></td>
</tr>
<tr>
<td>(u) up</td>
<td>(\gamma) photon</td>
</tr>
<tr>
<td>(c) charm</td>
<td></td>
</tr>
<tr>
<td>(t) top</td>
<td></td>
</tr>
<tr>
<td>(d) down</td>
<td></td>
</tr>
<tr>
<td>(s) strange</td>
<td></td>
</tr>
<tr>
<td>(b) bottom</td>
<td></td>
</tr>
<tr>
<td>Leptons</td>
<td>Force carriers</td>
</tr>
<tr>
<td>(\nu_e) electron neutrino</td>
<td></td>
</tr>
<tr>
<td>(\nu_\mu) muon neutrino</td>
<td></td>
</tr>
<tr>
<td>(\nu_\tau) tau neutrino</td>
<td></td>
</tr>
<tr>
<td>(W) W boson</td>
<td></td>
</tr>
<tr>
<td>(g) gluon</td>
<td></td>
</tr>
</tbody>
</table>

1 \(\rightarrow\) \(U(1)\)
3 \(\rightarrow\) \(SU(2)\)
8 \(\rightarrow\) \(SU(3)\)

12 (Gauge fields)
Phenomenology of Weak Interaction

- From the view of a high energy physics scattering experiment:
Change of Flavor & Charge
Parity Violation

- W bosons couple only to **left-handed particles** (**right-handed anti-particles**):

- Maximally parity violating!
- Intrinsically violating CP as well!
Heavy Mediators

- Mediation by heavy gauge bosons:

\[\frac{1}{Q^2} \]

\[m_{\gamma} = 0 \]

\[\frac{1}{Q^2 + m_W^2} \]

\[m_W = 85.385 \pm 0.015 \text{ GeV} \]
The Model of Weak Interactions

Sheldon Glashow (*5. December 1932)

Steven Weinberg (*3. Mai 1933)
SU(2) Space of Weak Isospin

- **Example:**

 \[\psi_L = \begin{pmatrix} \nu \\ e \end{pmatrix} \]

 - **left-handed** \(e_L \) & \(\nu \) form **isospin doublet**.

 \[e_R \]

 - **right-handed** \(e_R \) forms **isospin singlet**.

- **Left- & right-handed** components of fermions can be projected conveniently:

 \[
 e = e_L + e_R
 \]

 \[
 e_L = \left(\frac{1-\gamma^5}{2} \right) e \\
 e_R = \left(\frac{1+\gamma^5}{2} \right) e
 \]

 \[
 \bar{e}\gamma^\mu \left(\frac{1-\gamma^5}{2} \right) \nu = \bar{e}_L\gamma^\mu \nu_L
 \]

- **Lagrangian w/o mass terms** can be written in form:

 \[
 \mathcal{L}_0 = \bar{\psi}_L \gamma^\mu \partial_\mu \psi_L + \bar{e}_R \gamma^\mu \partial_\mu e_R = \bar{e}_L \gamma^\mu \partial_\mu e_L + \bar{\nu} \gamma^\mu \partial_\mu \nu + \bar{e}_R \gamma^\mu \partial_\mu e_R
 \]
Covariant Derivative of $SU(2) \times U(1)$

Covariant derivative corresponding to $SU(2)$ acts on *isospin doublet* only.\(^1\)

$$\mathcal{L}_{IA}^{SU(2) \times U(1)} = \bar{\psi}_L \gamma^\mu \left(\partial_\mu + ig W_\mu^a t^a \right) \psi_L \cdots$$

\(^1\) Note a different sign convention.
Covariant Derivative of $SU(2) \times U(1)$

Covariant derivative corresponding to $SU(2)$ acts on isospin doublet only.\(^1\)

\[
\mathcal{L}_{IA}^{SU(2) \times U(1)} = \overline{\psi}_L \gamma^\mu \left(\partial_\mu + igW_\mu^a t^a \right) \psi_L \cdots
\]

\[
t^+ = t_1 + i t_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{(ascending operator)}
\]

\[
t^- = t_1 - i t_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad \text{(descending operator)}
\]

\[
W_\mu^a t^a = \frac{1}{\sqrt{2}} (W_\mu^+ t^+ + W_\mu^- t^-) + W_\mu^3 t^3
\]

1) Note a different sign convention.
Covariant Derivative of $SU(2) \times U(1)$

Covariant derivative corresponding to $SU(2)$ acts on *isospin doublet* only.\(^1\)

\[
\mathcal{L}_{IA}^{SU(2) \times U(1)} = \overline{\psi}_L \gamma^\mu \left(\partial_\mu + igW^a_\mu t^a \right) \psi_L \ldots
\]

\(^1\) Note a different sign convention.
Covariant Derivative of $SU(2) \times U(1)$

Covariant derivative corresponding to $SU(2)$ acts on *isospin doublet* only.

\[\mathcal{L}_{IA}^{SU(2) \times U(1)} = \overline{\psi}_L \gamma^\mu \left(\partial_\mu + i \frac{g'}{2} Y_L B_\mu + ig W_\mu^a t^a \right) \psi_L + \overline{e}_R \gamma^\mu \left(\partial_\mu + i \frac{g'}{2} Y_R B_\mu \right) e_R \]

Covariant derivative corresponding to $U(1)$ acts on *isospin doublet* (as a whole) and on *isospin singlet*.

1) Note a different sign convention.
Covariant Derivative of $SU(2) \times U(1)$

Covariant derivative corresponding to $SU(2)$ acts on *isospin doublet* only.\(^1\)

\[
\mathcal{L}_{IA}^{SU(2) \times U(1)} = \bar{\psi}_L \gamma^\mu \left(\partial_\mu + ig' Y_L B_\mu + ig W^a_\mu t^a \right) \psi_L + \bar{e}_R \gamma^\mu \left(\partial_\mu + ig' Y_R B_\mu \right) e_R
\]

<table>
<thead>
<tr>
<th>Particle</th>
<th>$SU(2) \times U(1)$ Hypercharges $Y_{R/L}$</th>
<th>I_3</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>-1</td>
<td>$+1/2$</td>
<td></td>
</tr>
<tr>
<td>e_L</td>
<td>-1</td>
<td>$-1/2$</td>
<td></td>
</tr>
<tr>
<td>e_R</td>
<td>$-$</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

\[
Q = I_3 + \frac{Y}{2} \quad \text{(Gell-Mann Nischijama)}
\]

Covariant derivative corresponding to $U(1)$ acts on *isospin doublet* (as a whole) and on *isospin singlet*.

\(^1\) Note a different sign convention.
Covariant Derivative of $SU(2) \times U(1)$

Covariant derivative corresponding to $SU(2)$ acts on \textit{isospin doublet} only.\(^1\)

$$\mathcal{L}_{IA}^{SU(2) \times U(1)} = \bar{\psi}_L \gamma^\mu \left(\partial_\mu + ig' Y_L B_\mu + ig W_\mu^a t^a \right) \psi_L + \bar{e}_R \gamma^\mu \left(\partial_\mu + ig' Y_R B_\mu \right) e_R$$

<table>
<thead>
<tr>
<th>Particle</th>
<th>$SU(2) \times U(1)$ Hypercharges</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>e_L</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>e_R</td>
<td>-2</td>
<td>-1</td>
</tr>
</tbody>
</table>

$Q = I_3 + \frac{Y}{2}$ (Gell-Mann Nishijama)

\(^1\) Note a different sign convention.
\(SU(2) \times U(1) \) Interactions

- **Charged current interaction:**

\[
\mathcal{L}_{IA}^{CC} = -\frac{g}{\sqrt{2}} \left[\bar{\nu} \left(W^+_\mu \gamma^\mu \right) e_L + \bar{e}_L \left(W^-_\mu \gamma^\mu \right) \nu \right].
\]

- **Neutral current interaction:**

\[
\mathcal{L}_{IA}^{NC} = -\left(\frac{g}{2} W^3_\mu - \frac{g'}{2} B_\mu \right) (\bar{\nu} \gamma^\mu \nu) + \left(\frac{g}{2} W^3_\mu + \frac{g'}{2} B_\mu \right) (\bar{e}_L \gamma^\mu e_L) + \frac{g'}{2} B_\mu (\bar{e}_R \gamma^\mu e_R).
\]
SU(2) \times U(1) Interactions

- **Charged current interaction:**
 \[
 \mathcal{L}^{CC}_{IA} = -\frac{g}{\sqrt{2}} \left[\bar{\nu} \left(W^+_{\mu} \gamma^\mu \right) e_L + \bar{e}_L \left(W^-_{\mu} \gamma^\mu \right) \nu \right].
 \]

- **Neutral current interaction:**
 \[
 \mathcal{L}^{NC}_{IA} = -\left(\frac{g}{2} W^3_{\mu} - \frac{g'}{2} B_{\mu} \right) (\bar{\nu} \gamma^\mu \nu) + \left(\frac{g}{2} W^3_{\mu} + \frac{g'}{2} B_{\mu} \right) (\bar{e}_L \gamma^\mu e_L) + \frac{g'}{2} B_{\mu} (\bar{e}_R \gamma^\mu e_R).
 \]

- From t^+:
 \[e \to \nu \]

- From t^-:
 \[\nu \to e \]

- $\propto Z_\mu$

- \[
 \begin{pmatrix}
 Z_\mu \\
 A_\mu
 \end{pmatrix}
 =
 \begin{pmatrix}
 \cos \theta_W & -\sin \theta_W \\
 \sin \theta_W & \cos \theta_W
 \end{pmatrix}
 \begin{pmatrix}
 W^3_{\mu} \\
 B_{\mu}
 \end{pmatrix}
 \]

- \[
 \sin \theta_W = \frac{g'}{\sqrt{g^2+g'^2}} \quad \cos \theta_W = \frac{g}{\sqrt{g^2+g'^2}}
 \]

 (Weinberg Rotation)
SU(2) \times U(1) Interactions

- **Charged current interaction:**

\[
\mathcal{L}^{CC}_{IA} = - \frac{g}{\sqrt{2}} \left[\bar{\nu} (W^+_{\mu} \gamma^\mu) e_L + \bar{e}_L (W^-_{\mu} \gamma^\mu) \nu \right]
\]

Desired behavior: \(A_\mu \) couples to left- and right handed component of \(e \) in the same way!

- **Neutral current interaction:**

\[
\mathcal{L}^{NC}_{IA} = - \frac{\sqrt{g^2 + g'^2}}{2} Z_\mu (\bar{\nu} \gamma_\mu \nu) + \frac{\sqrt{g^2 + g'^2}}{2} \left[(\cos^2 \theta_W - \sin^2 \theta_W) Z_\mu + 2 \sin \theta_W \cos \theta_W A_\mu \right] (\bar{e}_L \gamma_\mu e_L) \\
+ \frac{\sqrt{g^2 + g'^2}}{2} \left[-2 \sin^2 \theta_W Z_\mu + 2 \sin \theta_W \cos \theta_W A_\mu \right] (\bar{e}_R \gamma_\mu e_R)
\]

What is the expression for \(e \) ?
SU(2) × U(1) Interactions

- **Charged current interaction:**
 \[
 \mathcal{L}_{IA}^{CC} = -\frac{g}{\sqrt{2}} \left[\bar{\nu} (W_\mu^+ \gamma^\mu) e_L + \bar{e}_L (W_\mu^- \gamma^\mu) \nu \right]
 \]
 Desired behavior: A_μ couples to left- and right handed component of e in the same way!

- **Neutral current interaction:**
 \[
 \mathcal{L}_{IA}^{NC} = -\frac{\sqrt{g^2 + g'^2}}{2} Z_\mu \left(\bar{\nu} \gamma^\mu \nu \right)
 \]
 \[
 + \frac{\sqrt{g^2 + g'^2}}{2} \left[(\cos^2 \theta_W - \sin^2 \theta_W) Z_\mu + 2 \sin \theta_W \cos \theta_W A_\mu \right] (\bar{e}_L \gamma^\mu e_L)
 \]
 \[
 + \frac{\sqrt{g^2 + g'^2}}{2} \left[-2 \sin^2 \theta_W Z_\mu + 2 \sin \theta_W \cos \theta_W A_\mu \right] (\bar{e}_R \gamma^\mu e_R)
 \]

What is the expression for e?
\[
e = \sqrt{g^2 + g'^2} \sin \theta_W \cos \theta_W
\]
NB: Skewness of the $SU(2) \times U(1)$

- Gauge boson *eigenstates* of the symmetry do not correspond to the *eigenstates* of the IA:

$$
\begin{pmatrix}
Z_\mu \\
A_\mu
\end{pmatrix} =
\begin{pmatrix}
\cos \theta_W & -\sin \theta_W \\
\sin \theta_W & \cos \theta_W
\end{pmatrix}
\begin{pmatrix}
W_\mu^3 \\
B_\mu
\end{pmatrix}
$$

- Quark *eigenstates* of the $SU(2)$ do not correspond to the quark *eigenstates* of the $SU(3)$ (NB: which are the mass *eigenstates*):

$$
\mathcal{M}_{CKM} =
\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
$$

$$
= \begin{pmatrix}
c_1 & s_1c_3 & s_1s_3 \\
-s_1c_2 & c_1c_2c_3 - s_2s_3e^{i\delta} & c_1c_2s_3 + s_2c_3e^{i\delta} \\
-s_1s_2 & c_1s_2c_3 + c_2s_3e^{i\delta} & c_1s_2s_3 - c_2c_3e^{i\delta}
\end{pmatrix}
$$

$$
c_i = \cos \theta_i \ ; \ s_i = \sin \theta_i \ (i = 1\ldots3)
$$
Non-Abelian Gauge Structure of $SU(2)$

\[\mathcal{L}_{\text{gauge}} = -\frac{1}{2} \text{Tr} \left(W^a_{\mu\nu} W^{a\mu\nu} \right) - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \]

\[B_{\mu\nu} = \partial_\mu B_\nu - \partial_\nu B_\mu \]

\[W_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + ig [W^a_\mu, W^a_\nu] \]

- Implies lepton universality of weak interaction. (→extensively tested @ LEP)

- Introduces:
 - Triple Gauge Couplings (TGC)
 - Quartic Gauge Couplings (QGC)

Which couplings are allowed (at tree level), which are not?
Non-Abelian Gauge Structure of $SU(2)$

\[\mathcal{L}_{\text{gauge}} = -\frac{1}{2} \text{Tr} \left(W^a_{\mu \nu} W^{a \mu \nu} \right) - \frac{1}{4} B_{\mu \nu} B^{\mu \nu} \]

\[B_{\mu \nu} = \partial_\mu B_\nu - \partial_\nu B_\mu \]

\[W^a_{\mu \nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + ig \left[W^a_\mu, W^a_\nu \right] \]

- Implies lepton universality of weak interaction. (→extensively tested @ LEP)

- Introduces:
 - Triple Gauge Couplings (TGC)
 - Quartic Gauge Couplings (QGC)

\[\gamma WW \quad ZWW \quad ZZ \]

\[ZZ \gamma \quad Z \gamma \]

\[WW Z \gamma \quad WW \gamma \gamma \quad WW ZZ \]

\[WWWW \quad ZZ \gamma \gamma \]

\[\text{Which couplings are allowed (at tree level), which are not?} \]
Concluding Remarks

- $SU(3) \times SU(2) \times U(1)$ gauge symmetries of the SM are internal continuous symmetries (\(\rightarrow\) corresponding to Lie-transformations).
Concluding Remarks

• $SU(3) \times SU(2) \times U(1)$ gauge symmetries of the SM are internal continuous symmetries (→ corresponding to Lie-transformations).

• Of those symmetries the "$SU(2)$-part" has the most peculiar behavior:
Concluding Remarks

- $SU(3) \times SU(2) \times U(1)$ gauge symmetries of the SM are internal continuous symmetries (→ corresponding to Lie-transformations).

- Of those symmetries the “$SU(2)$-part“ has the most peculiar behavior:
 - Fermions can *change charge* at IA vertex;
Concluding Remarks

• $SU(3) \times SU(2) \times U(1)$ gauge symmetries of the SM are internal continuous symmetries (\rightarrow corresponding to Lie-transformations).

• Of those symmetries the "$SU(2)$-part" has the most peculiar behavior:
 • Fermions can change charge at IA vertex;
 • Fermions can change flavor at IA vertex;
Concluding Remarks

- \(SU(3) \times SU(2) \times U(1)\) gauge symmetries of the SM are internal continuous symmetries (\(\rightarrow\) corresponding to Lie-transformations).

- Of those symmetries the “\(SU(2)\)-part" has the most peculiar behavior:
 - Fermions can \textit{change charge} at IA vertex;
 - Fermions can \textit{change flavor} at IA vertex;
 - No \textit{parity} conservation;
Concluding Remarks

- \(SU(3) \times SU(2) \times U(1) \) gauge symmetries of the SM are internal continuous symmetries (→ corresponding to Lie-transformations).

- Of those symmetries the “\(SU(2) \)-part“ has the most peculiar behavior:
 - Fermions can change charge at IA vertex;
 - Fermions can change flavor at IA vertex;
 - No parity conservation;
 - No CP conservation;
Concluding Remarks

- $SU(3) \times SU(2) \times U(1)$ gauge symmetries of the SM are **internal continuous symmetries** (\rightarrow corresponding to Lie-transformations).

- Of those symmetries the “$SU(2)$-part“ has the most peculiar behavior:
 - Fermions can *change charge* at IA vertex;
 - Fermions can *change flavor* at IA vertex;
 - No *parity* conservation;
 - No *CP* conservation;
 - No “*EWK symmetry* conservation”!
 - ...

Sneak Preview for Next Week

• Up to now the problem of mass has been completely ignored.

• Discuss how mass terms in the Lagrangian density will compromise local gauge symmetries.

• Discuss the dynamic generation of mass via spontaneous symmetry breaking.