Statistical Methods used for Higgs Boson Searches

Roger Wolf
Schedule for today

• What is the meaning of the degrees of freedom of the χ^2 function?

• What is the relation between the likelihood function and the χ^2 estimate?

1 Likelihood analyses
2 Parameter estimates
3 p-value, significance and limit setting
Statistics vs. particle physics

Experiment:

• All measurements we do are derived from rate measurements.

• We record millions of trillions of particle collisions.

• Each of these collisions is independent from all the others.

Theory:

• QM wave functions are interpreted as probability density functions.

• The Matrix Element, S_{fi}, gives the probability to find final state f for given initial state i.

• Each of the statistical processes $pdf \rightarrow ME \rightarrow$ hadronization \rightarrow energy loss in material \rightarrow digitization are statistically independent.

• Event by event simulation using Monte Carlo integration methods.

• Particle physics experiments are a perfect application for statistical methods.
Statistics vs. probability theory (stochastic)

Test statistic:
\[\Omega^n \to \mathbb{R} : \quad x \to f(x) \]

- NLL (\(q = -2 \ln(\mathcal{L}_1/\mathcal{L}_0) \)).
- Boosted Decision Tree (BDT) output.

Probability (density) function:
\[\Omega^n \to [0, 1] \subset \mathbb{R} : \quad x \to \mathcal{P}(x) \]

- \(\mathcal{P}("6") = 3.572 \cdot 10^{-6} \).
- Laplacian paradox.

- Problem of statistics is usually *ill-defined*.
- Deduce *truth* from shadows in Platon's cave...
The case of “truth”

- Deduce *truth* from shadows:
 - Usually phrased in form of (nested) models (=*ideas* for Platon):
- Mathematically model = hypothesis.

Statistics model:

- Usually not questioned

Uncertainty model:

- Usually determined to best knowledge (not questioned)

Physics model:

- Usually competing models/ hypotheses will be discussed here!
Probability distributions

Expectation: $\mu = np$

Variance: $\sigma^2 = np(1 - p)$

Binomial distribution

$$\mathcal{P}(k, n, p) = \binom{n}{k} p^k \cdot (1 - p)^{n-k}$$
Probability distributions

Gaussian distribution

- **Probability density function:**
 \[P(k, n, p) = \frac{1}{\sqrt{2\pi np(1-p)}} e^{-\frac{1}{2} \left(\frac{k-np}{np(1-p)} \right)^2} \]

- **Expectation:** \(\mu = np \)
- **Variance:** \(\sigma^2 = np(1 - p) \)

Binomial distribution

- **Probability mass function:**
 \[P(k, n, p) = \binom{n}{k} p^k \cdot (1 - p)^{n-k} \]

- **Expectation:** \(\mu = np \)
- **Variance:** \(\sigma^2 = np(1 - p) \)

Central limit theorem of de Moivre & Laplace.

- As \(n \to \infty \), \(p \) fixed, the distribution tends to a normal distribution.

Institute of Experimental Particle Physics (IEKP)
Probability distributions

(Binomial distribution)
- $n \rightarrow \infty$, np fixed
- Central limit theorem of de Moivre & Laplace.

\[
\mathcal{P}(k, n, p) = \binom{n}{k} p^k \cdot (1 - p)^{n-k}
\]

- **Expectation:** $\mu = np$
- **Variance:** $\sigma^2 = np(1 - p)$

(Poisson distribution)
- $n \rightarrow \infty$, np fixed
- Will be shown on next slide.

\[
\mathcal{P}(k, n, p) = \frac{(np)^k}{k!} e^{-np}
\]

- **Expectation:** $\mu = np$
- **Variance:** $\sigma^2 = \mu = np$
\[P(k, n, p) = \binom{n}{k} p^k \cdot (1 - p)^{n-k} \]

\[= \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} \cdot \frac{\mu^k}{n^k} \cdot \frac{(1-\frac{\mu}{n})^n}{(1-\frac{\mu}{n})^k} \]

\[= \frac{1 \cdot (1-\frac{1}{n}) \cdot (1-\frac{2}{n}) \cdots (1-\frac{k-1}{n})}{(1-\frac{\mu}{n})^k} \cdot \frac{\mu^k}{k!} \cdot (1-\frac{\mu}{n})^n \]

\[= \frac{1}{(1-\frac{\mu}{n})} \cdot \frac{1}{(1-\frac{\mu}{n})} \cdot \frac{1}{(1-\frac{\mu}{n})} \cdot \cdots \cdot \frac{1}{(1-\frac{\mu}{n})} \cdot \frac{\mu^k}{k!} \cdot (1-\frac{\mu}{n})^n \]

\[\rightarrow 1 \]

\[\rightarrow e^{-\mu} \]

\[= \frac{\mu^k}{k!} e^{-\mu} \]

\[\mu = \text{const}, \ n \rightarrow \infty \]
Models for counting experiments

\[\mathcal{P}(k_i, \mu_i) = \frac{\mu_i^{k_i}}{k_i!} e^{-\mu_i} \]

single experiment

Siméon Denis Poisson
(21.07.1781 – 25.04.1840)
Models for counting experiments

\[\prod_i \mathcal{P}(k_i, \mu_i) = \prod_i \frac{\mu_i^{k_i}}{k_i!} e^{-\mu_i} \]

many experiments

Siméon Denis Poisson
(21.07.1781 – 25.04.1840)
Model building (likelihood functions)

- Likeliness of a model to be true quantified by **likelihood function** $\mathcal{L}({k_i}, \{\kappa_j\})$.

 $\prod_i \mathcal{P}(k_i, \mu_i) = \prod_i \frac{\mu_i^{k_i}}{k_i!} e^{-\mu_i}$

 - model parameters.
 - measured number of events (e.g. in bins i).

- Simple example:
 signal on top of known background in a binned histogram:

\[
\mathcal{L}({k_i}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))
\]

Product of pdfs for each bin (Poisson).

- $\mu_i(\kappa_j) = \kappa_0 \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 x_i)^2}$

 - background
 - signal
Model building (likelihood functions)

- Likeliness of a model to be true quantified by likelihood function $\mathcal{L}(\{k_i\}, \{\kappa_j\})$.

- Simple example: signal on top of known background in a binned histogram:

$$
\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))
$$

Product of pdfs for each bin (Poisson).

$$
\mu_i(\kappa_j) = k_0 \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}
$$

EX: histogram with 25 bins; for each bin $\mathcal{P}(k_i, \mu_i(\kappa_j)) \geq 0.66$:

\begin{align*}
|\{k_i\}| &= 25 \\
|\{\kappa_j\}| &= 4 \\
\prod \mathcal{P}(k_i, \mu_i(\kappa_j)) &\sim 3.1 \cdot 10^{-5}
\end{align*}

NB: a value of a likelihood function as such is most of the time very close to zero, and w/o a reference in general w/o further meaning.
Distinguishing models \((\text{likelihood ratio})\)

- Task of likelihood analyses:
 do not determine likelihood of an experimental outcome per se, but distinguish models (=hypotheses) and determine the one that explains the experimental outcome best.

Fundamental lemma of Neyman-Pearson:

when performing a test between two simple hypotheses \(H_1\) and \(H_0\) the \textit{likelihood ratio test}, which rejects \(H_0\) in favor of \(H_1\) when

\[
Q = \frac{\mathcal{L}_{H_1}(\{k_i\}, \{\kappa_i\})}{\mathcal{L}_{H_0}(\{k_i\}, \{\kappa_i\})} \leq \eta
\]

\[
\mathcal{P}(Q(\{k_i\}, \{\kappa_i\}) \leq \eta | H_i) = \alpha
\]

is the most powerful test at significance level \(\alpha\) for a threshold \(\eta\).

- For \(q = -2 \ln Q\) this ratio turns into a difference \((\Delta \text{NLL})\).
Parameter estimates

Distinguish best parameter (set) in discrete or continuous transformations.
Maximum likelihood fit

- Each likelihood (ratio of) function(s) (with one or more parametric model part(s)) can be subject to a **maximum likelihood fit** (**NB**: negative log-likelihood finds its minimum where the log-likelihood is maximal...).

 - Minimization problem as known from school.
 - In our example e.g. four parameters κ_i.
 - Parameters can be constrained or unconstrained.

- Simple example:
 signal on top of known background in a binned histogram:

 $$ L(\{k_i\}, \{\kappa_j\}) = \prod_i P(k_i, \mu_i(\kappa_j)) $$

 Product for each bin (Poisson).

 $$ \mu_i(\kappa_j) = \kappa_0 \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 - x_i)^2} $$

 background signal

 The ATLAS+CMS Higgs couplings combined fit has $\mathcal{O}(4250)$ parameters and up to seven POI's.

 The CMS Tracker Alignment problem has $\mathcal{O}(50'000)$ parameters and several thousand POI's.
Parameter(s) of interest (POI)

- In a maximum likelihood fit each case/problem defines its own *parameter(s) of interest (POI's)*:
 - POI could be the mass (κ_3).

- Simple example:
signal on top of known background in a binned histogram:

$$\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))$$

Product for each bin (Poisson).

$$\mu_i(\kappa_j) = \kappa_0 \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-\left(\kappa_3 - x_i\right)^2}$$

background \hspace{1cm} signal

\[NB: \text{this is a likelihood ratio on its own.} \]
\[NB: \text{I've also made the scan based on a likelihood ratio.} \]

Likelihood scan
Parameter(s) of interest (POI)

- In a maximum likelihood fit each case/problem defines its own *parameter(s) of interest (POI's)*:
 - POI could be the mass (κ_3).
 - In our case POI usually is the signal strength (κ_2) (for a fixed value for κ_3).

- Simple example:
 signal on top of known background in a binned histogram:

$$\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))$$

Product for each bin (Poisson).

$$\mu_i(\kappa_j) = \kappa_0 \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}$$

Background **Signal**

Likelihood scan

NB: this is a likelihood ratio on its own

NB: I've also made the scan based on a likelihood ratio.
Incorporation of systematic uncertainties

- Systematic uncertainties are usually incorporated in form of *nuisance parameters*:
 - E.g. background normalization κ_0 not precisely known, but with uncertainty $\sigma(\kappa_0)$:
 \[\mu_i(\kappa_j) = \kappa_0 \mathcal{P}'(x, 1, \sigma(\kappa_0)) \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 - x_i)^2} \]
 - uncertainty
 - possible values of single “measurements” (integrated out)
 - expected value/best knowledge

- Simple example:
 signal on top of known background in a binned histogram:
 \[\mathcal{L}\left(\{k_i\}, \{\kappa_j\}\right) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j)) \]
 Product for each bin (Poisson).
 \[\mu_i(\kappa_j) = \kappa_0 \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 - x_i)^2} \]
 background signal
Incorporation of systematic uncertainties

- Systematic uncertainties are usually incorporated in form of *nuisance parameters*:
 - E.g. background normalization κ_0 not precisely known, but with uncertainty $\sigma(\kappa_0)$:
 $$\mu_i(\kappa_j) = \kappa_0 \mathcal{P}'(x, 1, \sigma(\kappa_0)) \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}$$

Probability density function (\mathcal{P})

Effect on BG normalization

$$-\ln Q = -\ln \left(\frac{\mathcal{L}_{H_1}(\{\kappa\}, \{\kappa\})}{\mathcal{L}_{H_0}(\{\kappa\}, \{\kappa\})} \right)$$
Relations between probability distributions

\[\frac{1}{\sqrt{2\pi\sigma x}} e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma} \right)^2} dx \]

Log-normal

Random variable variable made up of a sum of many single measurements.

\[\frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2} dx \]

Gaussian

Central Limit Theorem:

Random variable variable made up of a product of many single measurements.

\[\left(-\ln \left(\frac{\chi^2}{2\pi} \right) - \frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right) dx \]

\[\chi^2 \text{ Distribution} \]

What does the parameter \(k \) correspond to in the \(\chi^2 \) distributions?

\[n \to \infty, p = \text{cont} \]

\[n \to \infty, np = \text{cont} \]

Poisson

Look for something that is very rare very often.
Relations between probability distributions

\[\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{\ln(x) - \mu}{\sigma} \right)^2} \, dx \]

Central Limit Theorem:
Random variable made up of a sum of many single measurements.

Log-normal

Random variable made up of a product of many single measurements.

Gaussian

Binomial

Poisson

\[\left(-\ln \left(\sqrt{2\pi\sigma^2} \right) - \frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right) \, dx \]

What does the parameter \(k \) correspond to in the \(\chi^2 \) distributions?

Look for something that is very rare very often.
Example: saturated model

- Example of a likelihood ratio:

\[q_\lambda = -2 \ln \left(\frac{\mathcal{L}(\text{data}_{\text{test}})}{\mathcal{L}(\text{data}_{\text{saturated}})} \right) \]

Model to be tested.
Model w/ as many parameters, \(\lambda_j \), as measurements.

e.g. one shape for each bin.

- Special case: (i) histogram; (ii) no further nuisance parameters; (iii) uncertainties normal distributed:

\[
\mathcal{L}(\text{data}_{\text{test}}) = \prod_i \frac{1}{\sqrt{2\pi\sigma_i}} e^{-\frac{(d_i - \lambda_i)^2}{2\sigma_i}} \\
\mathcal{L}(\text{data}_{\text{saturated}}) = \prod_i \frac{1}{\sqrt{2\pi\sigma_i}} \\
q_\lambda = -2 \ln \left(\frac{\mathcal{L}(\text{data}_{\text{test}})}{\mathcal{L}(\text{data}_{\text{saturated}})} \right) = \sum_i \frac{(d_i - \lambda_i)^2}{\sigma_i}
\]

Generalization of the \(\chi^2 \) test.

- General case: (i) many histograms; (ii) many nuisance parameters:

\[
\text{CL of interest: } \int_{q_{\text{obs}}}^{+\infty} P_{\text{test}}
\]

Corresponds to 1.6\(\sigma \) compatibility
Hypothesis testing

Distinguish one preferred hypothesis \((H_0)\) against alternative hypotheses, in general in discrete but in special cases also in continuous transformations.

Full exclusion (here in \(m_{h^{mod}}\) scenario).
All further examples are taken from this very publication:

\[PRL\ 106\ (2011)\ 231801 \]
Example: test statistics \((\text{LEP }\sim 2000) \)

- Test signal \((H_1, \text{ for fixed mass, } m, \text{ and fixed signal strength, } \mu)\) vs. background-only \((H_0)\).

\[
\mathcal{L}(n|b(\kappa_j)) = \prod_i \mathcal{P}(n_i|b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\tilde{\kappa}_j)
\]

\[
\mathcal{L}(n|\mu s(\kappa_j) + b(\kappa_j)) = \prod_i \mathcal{P}(n_i|\mu s_i(\kappa_j) + b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\tilde{\kappa}_j)
\]

\[
q_\mu = -2 \ln \left(\frac{\mathcal{L}(n|\mu s + b)}{\mathcal{L}(n|b)} \right), \quad 0 \leq \mu
\]

nuisance parameters \(\tilde{\kappa}_j\) integrated out before evaluation of \(q_\mu\) (\(\rightarrow\)marginalization).
Example: test statistics (Tevatron ~2005)

- Test signal (H_1, for fixed mass, m, and fixed signal strength, μ) vs. background-only (H_0).

\[\mathcal{L}(n|b(\kappa_j)) = \prod_i \mathcal{P}(n_i|b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\tilde{\kappa}_j) \]

\[\mathcal{L}(n|\mu s(\kappa_j) + b(\kappa_j)) = \prod_i \mathcal{P}(n_i|\mu s_i(\kappa_j) + b_i(\kappa_j)) \times \prod_j \mathcal{C}(\kappa_j|\tilde{\kappa}_j) \]

\[q_\mu = -2 \ln \left(\frac{\mathcal{L}(n|\mu s(\hat{\kappa}_\mu) + b(\hat{\kappa}_\mu))}{\mathcal{L}(n|b(\hat{\kappa}_{\mu=0}))} \right), \quad 0 \leq \mu \]

nominator maximized for given μ before marginalization. Denominator for $\mu = 0$. Better estimates of nuisance parameters w/ reduced uncertainties.
Example: test statistics \((LHC \sim 2010)\)

- Test signal \((H_1,\) for fixed mass, \(m,\) and fixed signal strength, \(\mu)\) vs. background-only \((H_0)\).

\[\mathcal{L}(n|b(\kappa_j)) = \prod_i \mathcal{P}(n_i|b_i(\kappa_j)) \]
\[\mathcal{L}(n|\mu s(\kappa_j) + b(\kappa_j)) = \prod_i \mathcal{P}(n_i|\mu s_i(\kappa_j) + b_i(\kappa_j)) \]

\[q_\mu = -2 \ln \left(\frac{\mathcal{L}(n|\mu s(\hat{\kappa}_\mu) + b(\hat{\kappa}_\mu))}{\mathcal{L}(n|\hat{\mu} s(\hat{\kappa}_{\hat{\mu}}) + b(\hat{\kappa}_{\hat{\mu}}))} \right), \quad 0 \leq \hat{\mu} \leq \mu \]

nominator maximized for given \(\mu\) before marginalization. For the denominator a global maximum is searched for at \(\hat{\mu}\). In addition allows use of asymptotic formulas (\(\rightarrow\) no more toys needed!\(^{(\cdot)}\)).

(*) will not be discussed further here.
Test statistic in life

• From the evaluation of the test statistic on data always obtain a plain value q_{obs}
 (in our discussion: $q_{\text{obs}} < 0$ – signal-like; $q_{\text{obs}} > 0$ – background-like).

• → True outcome of the experiment
 (nuisance parameters estimated to best knowledge, no uncertainties involved here)!

$$\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i P(k_i, \mu_i(\kappa_j))$$

Product for each bin (Poisson).

$$\mu_i(\kappa_j) = \kappa_0 \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}$$

background signal
Meaning and interpretation of the test statistic

- How compatible is q_{obs} with H_0 or H_1? For this evaluate the test statistic on large number of toy experiments based on H_0 or H_1.

\[\mathcal{L}({k_i}, {k_j}) = \prod_i \mathcal{P}(k_i, \mu_i(k_j)) \]

Product for each bin (Poisson).

\[\mu_i(k_j) = \kappa_0 \cdot e^{-\kappa_1 x_i} + \kappa_2 \cdot e^{-(\kappa_3 - x_i)^2} \]

background \hspace{1cm} signal

- Determine toy dataset.
- Determine toy values for all uncertainties.
- Determine value of $-q$ for each toy.
- Proceed as often as possible; do this for H_0 & H_1.

$\mathcal{O}(50'000 \, \text{toys})$
Confidence levels (CL)

- The association to one or the other hypothesis can be performed up to a given confidence level α.

\[
(1 - CL_b) = \int_{-\infty}^{q_{obs}} \mathcal{P}_b \quad (p\text{-value})
\]

\[
CL_{s+b} = \int_{q_{obs}}^{+\infty} \mathcal{P}_{s+b} \quad (CL_{s+b} \text{ confidence})
\]

\[
CL_b = \int_{q_{obs}}^{+\infty} \mathcal{P}_b \quad (CL_b \text{ confidence})
\]

\[
CL_s = \frac{CL_{s+b}}{CL_b} \quad (CL_s \text{ confidence})
\]

Attention: in all plots $-q$ is shown.

Institute of Experimental Particle Physics (IEKP)
The p-value

The association to one or the other hypothesis can be performed up to a given confidence level α.

Probability to obtain values of q, which are at least as signal-like as q_{obs}. If p-value is small H_0 can be excluded. (*)

\[
(1 - CL_b) = \int_{-\infty}^{q_{\text{obs}}} P_b \quad \text{(p-value)}
\]

\[
CL_{s+b} = \int_{q_{\text{obs}}}^{+\infty} P_{s+b} \quad \text{(CL}_{s+b} \text{ confidence)}
\]

\[
CL_b = \int_{q_{\text{obs}}}^{+\infty} P_b \quad \text{(CL}_b \text{ confidence)}
\]

\[
CL_s = \frac{CL_{s+b}}{CL_b} \quad \text{(CL}_s \text{ confidence)}
\]

(*) Imagine data show a peak. What is the prob. that this is due to an upward fluctuation of the expectation from H_0.

Attention: in all plots $-q$ is shown.
Significance

- If the measurement is normal distributed q is distributed according to a χ^2 distribution (cf. slide 21f).
- The resulting χ^2 probability is then equivalent to a Gaussian confidence interval in terms of standard deviations σ.

p-values:
- $\mathcal{P}(q \geq 3\sigma|H_0) = 1 \cdot 10^{-3}$
- $\mathcal{P}(q \geq 5\sigma|H_0) = 2 \cdot 10^{-5}$
Significance (in practice)

- If the measurement is normal distributed \(q \) is distributed according to a \(\chi^2 \) distribution (cf. slide 21f).

- The resulting \(\chi^2 \) probability is then equivalent to a Gaussian confidence interval in terms of standard deviations.

\[
S = \frac{n_{\text{obs}} - n_b}{\sqrt{n_b}}
\]

Deviation from expectation for \(H_0 \).

Poisson uncert. for \(H_0 \).
Excluding parameters

- Sorry, don't see any signal. Up to what size should I definitely have seen it?

- Usually q depends on POI: $q = -2 \ln \left(\frac{\mathcal{L}(\text{obs})|H_1}{\mathcal{L}(\text{obs})|H_0} \right)$
Excluding parameters

- Usually q depends on POI: $q = -2 \ln \left(\frac{\mathcal{L}(\text{obs})|H_1}{\mathcal{L}(\text{obs})|H_0} \right)$
Excluding parameters

- Usually q depends on POI: $q = -2 \ln \left(\frac{\mathcal{L}_{\text{obs}}}{\mathcal{L}_{\text{obs}}|H_0} \right)$
Excluding parameters

- Usually q depends on POI: $q = -2 \ln \left(\frac{\mathcal{L}(\text{obs})|H_1}{\mathcal{L}(\text{obs})|H_0} \right)$
Excluding parameters

Challenging the H_1 hypothesis

- Usually q depends on POI: $q = -2 \ln \left(\frac{\mathcal{L}(\text{obs})|H_1}{\mathcal{L}(\text{obs})|H_0} \right)$
Observed exclusion

- Traditionally we determine 95% CL exclusions on the POI ($\alpha = 0.05$).
- To be conservative choose probability α that q is more BG-like than q_{obs} low (\rightarrow safer exclusion).
- $P(-q|H_0)$ and $P(-q|H_1)$ move apart from each other with increasing POI.
- The more separated $P(-q|H_0)$ and $P(-q|H_1)$ are the clearer H_0 and H_1 can be distinguished.
- For 95% CL identify value of POI for which: $CL_{s+b} = \int_{q_{obs}}^{+\infty} P_{s+b} = 0.05$
 for this value $q|H_1$ would have been more signal-like than q_{obs} with 95% probability.
- There is still a 5% chance that we exclude by mistake.
Expected exclusion

- To obtain expected limit mimic calculation of observed; base it on toy datasets.

- Use fact that $P(-q|H_0)$ and $P(-q|H_1)$ do not depend on toys (i.e. schematic plot on the left does not change).

Throw toys under H_0 hypothesis; determine distribution of 95% CL limits on POI:

Obtain quantiles for expected exclusion from this distribution (expected limit = median).

Challenging the H_1 hypothesis
Interpretation issues (increasing pathology)

- Signal and BG hypothesis cannot be distinguished.
- Should this outcome lead to an exclusion of the signal hypothesis?

- q_{obs} incompatible both with signal and BG hypothesis.
- Should this outcome lead to an exclusion of the signal hypothesis?

- q_{obs} compatible with BG hypothesis.
- q_{obs} incompatible with signal hypothesis.
Modified frequentist exclusion method (CL_s)

- In particle physics we set more conservative limits, following the CL_s method:

\begin{itemize}
 \item $CL_{s+b} = \int_{q_{obs}}^{+\infty} P_{s+b}$
 \item $CL_b = \int_{q_{obs}}^{\infty} P_b$
 \item Identify value of POI for which:
 \[
 CL_s = \frac{CL_{s+b}}{CL_b} = 0.05
 \]
 \item If H_0 and H_1 become indistinguishable:
 \[
 CL_{s+b} < CL_s \rightarrow 1
 \]
\end{itemize}
Assume our POI is the signal strength μ of a new signal: does the 90% CL upper limit on μ correspond to a higher or a lower value than the 95% CL limit?
Judgment call

- Assume our POI is the signal strength μ of a new signal: does the 90% CL upper limit on μ correspond to a higher or a lower value than the 95% CL limit?

It's lower:

\[\mu_{99\%} \quad \mu_{95\%} \quad \mu_{90\%} \]

\[1\% \quad 5\% \quad 10\% \]

\{ probability of q to be “more background like” than q_{obs}. \}
Concluding remarks

- Reviewed all statistical tools necessary to search for the Higgs boson signal (as a small signal above a known background):

- Limits: usual way to 'challenge' signal hypothesis \((H_1) \).

- \(p \)-values: usual way to 'challenge' background hypothesis \((H_0) \).

- Under the assumption that the test statistic \(q \) is \(\chi^2 \) distributed \(p \)-values can be translated into Gaussian confidence intervals \(\sigma \).

- In particle physics we call an observation with \(\geq 3\sigma \) an evidence.

- We call an observation with \(\geq 5\sigma \) a discovery.

During the next lectures we will see 1:1 life examples of all methods that have been presented here.